The quadratic formula is
\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\]
So in this case this gives
\[x = \frac{-(\var{b}) \pm \sqrt{(\var{b})^2 - 4\times (\var{a})\times(\var{c})}}{2\times(\var{a})}\]
Giving
\[x = \frac{\simplify{-{b}} \pm \sqrt{\simplify{{b}^2 - 4* {a}*{c}}}}{\var{2*a}}\]
So
\[x = \frac{\simplify{-{b}} - \sqrt{\simplify{{b}^2 - 4* {a}*{c}}}}{\var{2*a}}\qquad\mbox{and}\qquad x = \frac{\simplify{-{b}} + \sqrt{\simplify{{b}^2 - 4* {a}*{c}}}}{\var{2*a}}\]
Giving
\[x_1 = \var{sigformat(x_1,3)}\qquad\mbox{and}\qquad x_1 = \var{sigformat(x_2,3)}\]